Rzk proof assistant and simplicial HoTT formalisation!

Nikolai Kudasov
Homotopy Type Theory Electronic Seminar Talks (HoTTEST), October 5th, 2023

Lab of Programming Languages and Compilers

u INNOPOLIS
I UNIVERSITY

tioint with Emily Riehl and Jonathan Weinberger

Qutline

1. Rzk in context

N

. Simplicial type theory in Rzk

3. Simplicial HoTT formalization?
4. Development of Rzk

5. Conclusion

2joint with Emily Riehl and Jonathan Weinberger

2/34

Rzk in context

Synthetic theories and proof assistants

1. Reasoning directly in (higher) category theory (or homotopy theory) is hard,
because one has to check coherences on (infinitely) many levels

Applications?
(Physics, Biology, Computer Science, etc.)

Homotopy Theory (Higher) Category Theory

!see Applied Category Theory at https://www.appliedcategorytheory.org

3/34

https://www.appliedcategorytheory.org

Synthetic theories and proof assistants

1. Reasoning directly in (higher) category theory (or homotopy theory) is hard,
because one has to check coherences on (infinitely) many levels

2. Synthetic theories allow to interalize some of the arguments in such a way that
(some) proofs become easier

Applications?
(Physics, Biology, Computer Science, etc.)

Homotopy Theory (Higher) Category Theory

Homotopy Type Theory Type Theory for Synthetic co-categories

!see Applied Category Theory at https://www.appliedcategorytheory.org

3/34

https://www.appliedcategorytheory.org

Synthetic theories and proof assistants

1. Reasoning directly in (higher) category theory (or homotopy theory) is hard,
because one has to check coherences on (infinitely) many levels

2. Synthetic theories allow to interalize some of the arguments in such a way that
(some) proofs become easier

3. Proof assistants check or even derive proofs in synthetic theories

Applications?
(Physics, Biology, Computer Science, etc.)

Homotopy Theory (Higher) Category Theory
Homotopy Type Theory Type Theory for Synthetic co-categories
UniMath, cubical Agda, redtt, etc. Rzk

!see Applied Category Theory at https://www.appliedcategorytheory.org

3/34

https://www.appliedcategorytheory.org

Towards directed type theory
1. HoTT

e all types are oo-groupoids (aka (oo, 0)-categories)
e identity types provide the oo-groupoid structure

4/34

Towards directed type theory

1. HoTT

all types are co-groupoids (aka (0o, 0)-categories)
identity types provide the co-groupoid structure

2. simplicial HoTT

some types are oo-categories (aka (oo, 1)-categories)

identity types provide the co-groupoid structure as in HoTT

simplicial types give rise to an independent higher structure

in Segal types (pre-oco-categories), hom-types provide categorical structure

in Rezk types (oo-categories), isomorphisms become equivalent to paths, merging
the two higher structures

4/34

Towards directed type theory

1. HoTT

all types are co-groupoids (aka (0o, 0)-categories)
identity types provide the co-groupoid structure

2. simplicial HoTT

some types are oo-categories (aka (oo, 1)-categories)

identity types provide the co-groupoid structure as in HoTT

simplicial types give rise to an independent higher structure

in Segal types (pre-oco-categories), hom-types provide categorical structure

in Rezk types (oo-categories), isomorphisms become equivalent to paths, merging
the two higher structures

3. directed type theory

all/some types are (0o, 0o)-categories

no definitive theory exists yet (but there is work in progress)

in particular, (Riehl and Shulman 2017, Section 3.1) suggests that using different
shapes in their type theory should yield such theories and even combine them

4/34

Proof assistants and HoTT formalizations

HoTT is successfully formalized in many proof assistants:

UniMath (Coq library)

agda-unimath (Agda library)

agda/cubical (Cubical Agda library)

arend-11ib (Arend library)

Lean 2 HoTT exists, but since then Lean had UIP built in, prohibiting HoTT.

To formalize type theory with shapes (Riehl and Shulman 2017), we need extension

types. To the best of my knowledge, these are only supported w.r.t. the cubical interval

in proof assistants for cubical type theories (such as Cubical Agda, Arend, Aya, red*).

This means that simplicial type theory can be formalized either with a lot of extra

bookkeeping?, in a new proof assistant, or in an extension of an existing one.

2 it might be possible to utilize user-define rewrite rules to some extent

5/34

https://github.com/UniMath/UniMath
https://coq.inria.fr/
https://unimath.github.io/agda-unimath/
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://github.com/agda/cubical
https://agda.readthedocs.io/en/v2.6.2.1/language/cubical.html
https://github.com/JetBrains/arend-lib
https://arend-lang.github.io/
https://github.com/leanprover/lean2/blob/master/hott/hott.md
https://agda.readthedocs.io/en/v2.6.2.1/language/cubical.html
https://arend-lang.github.io/
https://www.aya-prover.org
https://redprl.org

Simplicial type theory in Rzk

Overview

A type theory for synthetic co-categories (Riehl and Shulman 2017) is an extension over

an (intentional) Martin-L&f Type Theory with two important features:

1. extension types
e reduce bookkeeping in proofs
e rely heavily on judgemental equality
e may introduce local judgemental equalities into scopes
2. tope logic
e allows to "carve out" shapes of (categorical) diagrams
e requires a fully automated (intuitionistic) constraint solver

Rzk is an experimental proof assistant (and a language) based on this type theory.

github.com/rzk-lang/rzk or rzk-lang.github.io

See full code for this section at fizruk.github.io/hottest-2023-rzk-demo

6/34

https://github.com/rzk-lang/rzk
https://rzk-lang.github.io/
https://fizruk.github.io/hottest-2023-rzk-demo

Type theory with shapes

A 3-layer type theory:

1. cubes provide spaces where points come from;
2. topes provide restrictions of those spaces;
3. types and terms are indexed by points in cubes, restricted by topes.

(ts=0ANt2 <t1)V aboed: A gof=h
(t1,t2,t3) : 23 (ts <ta Aty = 1)V f7 hklm mog=1
(ts <taAta=t1) P9I G moh==k

See full code for this section at fizruk.github.io/hottest-2023-rzk-demo 7/34

https://fizruk.github.io/hottest-2023-rzk-demo

Cubes and topes

Cubes: directed interval 2, directed square 2 x 2, directed cube 2 x 2 x 2, etc.

A tope is essentially an (intuitionistic) logical formula that restricts which points in a
given space we consider:

TOP selects all points in a given space (no restrictions, think true);
BOT selects nothing (think false);

(¢p N () selects all points that satisfy both v and (;

(¢ v () selects all points that satisfy either ¢ or (;

(t = s) selects all points such that t = s;

A o

(t < s) selects all points such that t < s (when t and s are in 2);

See full code for this section at fizruk.github.io/hottest-2023-rzk-demo 8/34

https://fizruk.github.io/hottest-2023-rzk-demo

Basic shapes: simplices

Basic shapes over (products of) the directed interval cube:

1 | #define A? .

2 : 2 > TOPE

3 :=\ _ > TOP .
4

5 |#define A? A
6 : (2 x 2) > TOPE

7 =\ (t, s) » (s < t)

8

9 |#define A3

10 : (2 x 2 x 2) > TOPE

1 1=\ ((t1, t2), t3) > (t3 < t2) A (t2 < t1) -

See full code for this section at fizruk.github.io/hottest-2023-rzk-demo 9/34

https://fizruk.github.io/hottest-2023-rzk-demo

Basic shapes: horns

1 #define A
(2 x 2) > TOPE

»

3 =\ (t, s) » (s = 02) V (t = 12)

4

5 #define A'

6 ((t, s) : 2 x2 | A? (t, s)) > TOPE

7 =\ (t, s) » (s = 02) V (t = 1z) |
8

9 #define A"!'
10 : A? 5 TOPE
11 =\ (t, s) » (s

02) V (t = 12)

See full code for this section at fizruk.github.io/hottest-2023-rzk-demo 10/34

https://fizruk.github.io/hottest-2023-rzk-demo

Type layer: dependent functions

S

© 0 N o u

10
11
12
13

Dependent function types allow result type to depend on the value of a previously
introduced argument. Here are some equivalent notations for an identity function:

#define identity
(A :U) > (x:A) >A
=\ A X > X

-- omit x 1in the type
#define identitys
(A :U) > (A>A)
=\ A X > x

-- 1dntroduce A for type and term at the same time
#define identitys (A : U)

A A

=\ X > x

See full code for this section at fizruk.github.io/hottest-2023-rzk-demo

11/34

https://fizruk.github.io/hottest-2023-rzk-demo

Type layer: dependent functions

A dependently-typed version of flipping arguments of a function:

1 -- Flipping the arguments of a function.

2 #define flip

3 (AB: U -- For any types A and B

4 (C:A>B>U -- and a type family C

5 (f: (x:A)>(y :B)>Cxy) - given a function f : A > B > C

6 (y : By > (x : A) >Cxy -- we construct a function of type B > A > C
7 = \yx>fxy -- by swapping the arguments

8

9 -- Flipping a function twice is the same as not doing anything

10 #define flip-flip-is-id

11 (AB: U -- For any types A and B

12 (C:A>B>U -- and a type family C

13 (f (x : A) > (y : B) »C xy) —— given a function f : A > B > C

14 : f=flipBA (\y x> C xy)

15 (flip A B C f) -- flipping f twice is the same as f
16 1= refl -- proof by reflexivity

See full code for this section at fizruk.github.io/hottest-2023-rzk-demo 12/34

https://fizruk.github.io/hottest-2023-rzk-demo

Type layer: identity/path types

1 #variable X : U

2 #variable Y ¢ X > U

3

4 -- transport in a type family along a path in the base
5 #define transport

6 (xy :X)

7 (p:x=y)

8 (u:Yx)

9 Yy

10 2= 1dI (X, x, \y' p' > Yy', u,y, p)

See full code for this section at fizruk.github.io/hottest-2023-rzk-demo 13/34

https://fizruk.github.io/hottest-2023-rzk-demo

Simplicial types: hom

1 |-- [RS17, Definition 5.1]

2 | -- The type of arrows in A from x to y.
3 | #def hom

4 (A u) -- A type.

5 (xy : A) —— Two points in A.

6 HV)

7 = (t : AY) s A [

8 t = 02 = X,

9 t =1 — vy

10]

See full code for this section at fizruk.github.io/hottest-2023-rzk-demo

14/34

https://fizruk.github.io/hottest-2023-rzk-demo

Simplicial types: hom?2

1 |-- [RS17, Definition 5.2]

2 |-- The type of commutative triangles in A.

3 | #def hom2

4 (A : U

5 (xyz:A)

6 (f : hom A x vy) X f——y
7 (g: homAy z) \h gl
8 (h : hom A x z)

9 V) \i
10 = ((t1, t2) : A2) > A [

11 te = 02 = f ty,

12 th = 1 — g ta,

13 te = t1 = h t

14]

See full code for this section at fizruk.github.io/hottest-2023-rzk-demo 15/34

https://fizruk.github.io/hottest-2023-rzk-demo

Composition of cofibrations [RS17, Theorem 4.4]

© 0 N O U s W N =

e e
w N = O

[un
'S

15

#define cofibration-composition

(I : CUBE)
(x : I > TOPE)
(¢ : x » TOPE)
(¢ : ¢ > TOPE)
(X : x>0V
(a: (t:¢)>Xt)
: Equiv
((t:x)>Xt[pt—at])
(2 (f:(t:vY)>Xt[pt—at]),
((t:x) > Xt vt ft]))
(\Vh> \Nt>ht,\t>ht),
CCN(Cf, g t>gt, \ h>refl),
(N (f, 8 t>gt, \ h>refl))))

See full code for this section at fizruk.github.io/hottest-2023-rzk-demo

16/34

https://fizruk.github.io/hottest-2023-rzk-demo

Composition of cofibrations [RS17, Theorem 4.4]

1 #define cofibration-composition

2 (I : CUBE)

3 (x : I > TOPE)

4 (¢ : x > TOPE)

5 (¢ : 1 > TOPE)

6 (X : x>0

7 (a: (t:¢)>Xr1

8 ¢ Equiv

9 ((t:x)>Xt[pt—at])

10 (2 (f:(t:y)->Xtlpt—at],
11 ((t:x)>Xt[vt—ft]))

12 =

13 (\Vh>(\Nt>ht,\t>ht),

14 CCN(CF, g t>gt, \ hsrefl),
15 CCN(f,8 t>gt, \h>refl))))

N

(A% = A) ~ > > > > hom? (f, g; h)

T,y,z: A fihom 4 (z,y) g:hom 4 (y,2) h:hom 4 (z,z)
See full code for this section at fizruk.github.io/hottest-2023-rzk-demo 17/34

https://fizruk.github.io/hottest-2023-rzk-demo

Simplicial HoTT formalizationf

tioint with Emily Riehl and Jonathan Weinberger

Segal types (pre-oco-categories)

HY)

(y

© 0 N O U s W N =

=
o

[
.

Complete formalization at rzk-lang.github.io/sHoTT /simplicial-hott/05-segal-types.rzk/

(x =
:A) >
(z :
(f :
(g :
is-contr (X (h : hom A x z) ,

#define is-segal
(A :

u)

A) >
A) >
hom A x y) >
hom Ay z) >

(hom2 A x y z f g h))

18/34

https://rzk-lang.github.io/sHoTT/simplicial-hott/05-segal-types.rzk/

Segal types (pre-oco-categories) — alternative characterization

X —_——y

#define horn-restriction
(A : U
(A% 5 A) 5> (A > A)
=\ ft>ft z

#define dis-local-horn-inclusion
(A : U
: U
1= is-equiv (A% 5 A) (A > A)
(horn-restriction A)

© 0w N O Uk W N

fun
[=}

Complete formalization at rzk-lang.github.io/sHoTT /simplicial-hott/05-segal-types.rzk/ 19/34

https://rzk-lang.github.io/sHoTT/simplicial-hott/05-segal-types.rzk/

Associativity for Segal types: unfolding square

.]

1 #define unfolding-square

2 (A:U)

3 (triangle : A2 > A)

4 DANXAT 5 A

5 1=

6 \ (t, s) >

7 recOR

8 (t < s+ triangle (s , t) ,

9 s < t +— triangle (t , s)) L v
[> o

Complete formalization at rzk-lang.github.io/sHoTT /simplicial-hott/05-segal-types.rzk/

20/34

https://rzk-lang.github.io/sHoTT/simplicial-hott/05-segal-types.rzk/

Associativity for Segal types: unfolding composition square

#define witness-square-comp-is-segal
(A : U
(is-segal-A : is-segal A)
(xyz:A

(f : homA xvy)
(g: homAy z)
DANXAT 5 A
:= unfolding-square A
(witness-comp-is-segal A is-segal-A x y z f g)

© 000U WN -

Complete formalization at rzk-lang.github.io/sHoTT /simplicial-hott/05-segal-types.rzk/ 21/34

https://rzk-lang.github.io/sHoTT/simplicial-hott/05-segal-types.rzk/

Associativity for Segal types: arrows in arrow type

»
<

#define arr-in-arr-is-segal
(A : U
(is-segal-A : is-segal A)

(xyz:A
(f: hom A x y) f ﬁ g
(g: homAy z)
: hom (arr A) f g
=\ ts >
witness-square-comp-is-segal A is-segal-A xy z f g (t , s)

© 00O U WN -

Complete formalization at rzk-lang.github.io/sHoTT /simplicial-hott/05-segal-types.rzk/ 22/34

https://rzk-lang.github.io/sHoTT/simplicial-hott/05-segal-types.rzk/

Associativity for Segal types: associativity prism

1 #define witness-asociative-is-segal uses (extext)

2 (A:U)

3 (is-segal-A : is-segal A)

4 (wxyz:A)

5 (f : hom A w x) W X
6 (g : homAXy)

7 (h:homAy z)

8 : hom2 (arr A) f g h

9 (arr-in-arr-is-segal A is-segal-Aw x y f g)

10 (arr-in-arr-is-segal A is-segal-A x y z g h) f g
11 (comp-is-segal (arr A) (is-segal-arr A is-segal-A)

12 fgh

13 (arr-in-arr-is-segal A is-segal-Aw x y f g) h

14 (arr-in-arr-is-segal A is-segal-A x y z g h))

15 = X y
16 witness-comp-is-segal

17 (arr A) A

18 (is-segal-arr A tis-segal-A)

19 fgh

20 (arr-in-arr-is-segal A is-segal-A w x y f g)

21 (arr—-in-arr-is-segal A is-segal-A x y z g h)

Complete formalization at rzk-lang.github.io/sHoTT /simplicial-hott/05-segal-types.rzk/ 23/34

https://rzk-lang.github.io/sHoTT/simplicial-hott/05-segal-types.rzk/

Associativity for Segal types: associativity tetrahedron

1 #define tetrahedron-associative-is-segal uses (extext)
2 (A:U)

3 (is-segal-A : is-segal A)

4 (wxyz:A)

5 (f : hom A w x)

6 (g : homA xvy)

7 (h: homAy z)

8 P A 5 A

9 =

10 \V((t,s) ,) 2

11 (witness-asociative-is-segal A is-segal-Aw x y z f g h)
12 (t, r)s

w-p X

Complete formalization at rzk-lang.github.io/sHoTT /simplicial-hott/05-segal-types.rzk/ 24/34

https://rzk-lang.github.io/sHoTT/simplicial-hott/05-segal-types.rzk/

Associativity for Segal types: triple composition

1 #define triple-comp-is-segal uses (extext) W—PX
2 (A:U)

3 (is-segal-A : is-segal A)

4 (wxyz:A)

5 (f hom A w x)

6 (g : homA xvy)

7 (h: homAy z)

8 : hom Aw z

9 =

10 \ t o>

11 tetrahedron-associative-is-segal A is-segal-Aw xy z f gh
12 (t,n,t

Complete formalization at rzk-lang.github.io/sHoTT /simplicial-hott/05-segal-types.rzk/

25/34

https://rzk-lang.github.io/sHoTT/simplicial-hott/05-segal-types.rzk/

Associativity for Segal types: left witness

1 #define left-witness-asociative-is-segal uses (extext)

2 (A: U W—"X
3 (is-segal-A : is-segal A)

4 (wxyz:A)

5 (f : hom A w x)

6 (g : homA xvy)

7 (h: homAy z)

8 : hom2 Awy z

9 (comp-is-segal A is-segal-A w x y f g)

10 h

11 (triple-comp-is-segal A is-segal-Aw x y z f g h)

12 =

13 \ (t, s) »

14 tetrahedron-associative-is-segal A is-segal-Aw xy z f gh
15 ((t,), s

Complete formalization at rzk-lang.github.io/sHoTT /simplicial-hott/05-segal-types.rzk/ 26/34

https://rzk-lang.github.io/sHoTT/simplicial-hott/05-segal-types.rzk/

Associativity for Segal types: right witness

1 #define right-witness-asociative-is-segal uses (extext)

2 (A:U) W—PX
3 (is-segal-A : is-segal A)

4 (wxyz:A)

5 (f : hom A w x)

6 (g : homA xvy)

7 (h: homAy z)

8 : hom2 A w x z

9 (G

10 (comp-is-segal A is-segal-A x y z g h)

11 (triple-comp-is-segal A is-segal-Aw x y z f g h)

12 =

13 \ (t, s) »

14 tetrahedron-associative-is-segal A is-segal-Aw xy z f gh
15 ((t,s),s)

Complete formalization at rzk-lang.github.io/sHoTT /simplicial-hott/05-segal-types.rzk/ 27/34

https://rzk-lang.github.io/sHoTT/simplicial-hott/05-segal-types.rzk/

A formalized proof of the oo-categorical Yoneda lemma

=

H O © WO U WN -

Our initial aim was to write a formalized proof of the co-categorical Yoneda lemma.

github.com/emilyriehl/yoneda or emilyriehl.github.io/yoneda/

e proof from Riehl and Shulman 2017
e formalizations written by Nikolai Kudasov, Emily Riehl, Jonathan Weinberger
e completed March 12 — April 17, 2023

#def yoneda-lemma uses (funext)

(AU

(is-segal-A : is-segal A)
(a:A)

(C:A>U

(is-covariant-C : is-covariant A C)
: is-equiv ((z : A) > hom A az > C z) (Ca) (evid A a ()
:= (((yon A is-segal-A a C is-covariant-C) ,
(yon-evid A is-segal-A a C is-covariant-C)) ,
((yon A is-segal-A a C is-covariant-C) ,

(evid-yon A is-segal-A a C is-covariant-C)))

See more details at arxiv.org/abs/2309.08340

28/34

https://github.com/emilyriehl/yoneda
https://emilyriehl.github.io/yoneda/
https://arxiv.org/abs/2309.08340

Fixing a proof

Rzk helped find an bug (circular reasoning) in a proof
of Riehl and Shulman 2017, Proposition 8.13.
Fortunately, the proof could be fixed* in a fairly
straightforward way.

*emilyriehl/yoneda#£6

Proposition 8.13. Let A be a type and fiz a: A. Then the type family
Az. homa(a,z): AU
is covariant if and only if A is a Segal type.
Proof. The condition of Definition 8.2 asserts that for each b,c: A, f: homa(a,b),
and g : hom(b, c), the type
(L. homaa, 9| P24
Fhemr(ae)
is contractible. Applying Theorem 4.4, this is easily seen to be equivalent to
(2x2 > affasa)

where d is the “cubical horn”

But since 2 x 2 is the pushout of two copies of A% over their diagonal faces, our
type is now also equivalent to

v (m.ﬁ(,f/:—l’,)x) :.o,.a(;‘
)

kehoma(a.c) hhoma (a.c

Now by Proposition 5.10, we have

(> 1.um£< oo ')) =~ Y =k,
h:hom a(a,c) i hihoma(a,c)

which is contractible. Thus, it remains to consider

f 9
> hA(L)
k:homa (a,c) &

which is contractible if and only if A is a Segal type. o

29/34

https://github.com/emilyriehl/yoneda/pull/6

Formalizing synthetic co-categories

We are now on a path to formalize more results from synthetic co-categories in Rzk:
github.com/rzk-lang/sHoTT or rzk-lang.github.io/sHoTT/

The aim is to formalize results from

e Type theory for synthetic co-categories (Riehl and Shulman 2017)
e Limits and colimits of synthetic oo-categories (Bardomiano Martinez 2022)
e Synthetic fibered (00,1)-category theory (Buchholtz and Weinberger 2023)

Recently, new contributors joined the formalization project during the school
“Interactions between Proof Assistants and Mathematics” in Regensburg:

rzk-lang.github.io/sHoTT/CONTRIBUTORS/

30/34

https://github.com/rzk-lang/sHoTT
https://rzk-lang.github.io/sHoTT/
https://rzk-lang.github.io/sHoTT/CONTRIBUTORS/

Development of Rzk

Rzk and satellite tools

With active users, Rzk has gained some tooling and editor support:

e VS Code extension and Rzk Language Server
(maintained by Abdelrahman Abounegm)
e Tooling for documentation of formalizations:
e literate Rzk Markdown
leveraging MkDocs Material for rendering

e pygments-rzk for syntax highlighting

mkdocs-plugin-rzk for definition anchors and diagram rendering
(maintained by Abdelrahman Abounegm)

See more details about these and other satellite tools at
github.com/rzk-lang

31/34

https://github.com/rzk-lang/pygments-rzk
https://github.com/rzk-lang/mkdocs-plugin-rzk
https://github.com/rzk-lang

Rzk features

Currently Rzk has primitive syntax and only a few of convenience features:

e fully automated tope logic solver
e Cog-style sections and variables

e experimental diagram rendering
VS Code extension provides:

e semantic syntax highlighting
e automatic checking in the background
e basic diagnostics

e basic autocompletion for top-level definitions
There is also an online Rzk playground at rzk-lang.github.io/rzk /v0.6.6/playground/

32/34

https://rzk-lang.github.io/rzk/v0.6.6/playground/

Rzk missing features

Quite a few features are currently missing, but should be added:

e hierarchy of universes

e type and term inference, which should bring
e typed holes
e implicit arguments
e reasoning with chains of equations

local definitions (e.g. #let command, let-expression and where-clause)

user-defined (directed) higher-inductive types

user-defined cubes and topes
VS Code extension is also planned to support:

e better diagnostics (details, hints, warnings, quick fixes)

e Rzk InfoView (a la Lean's Info View)
33/34

Conclusion

Conclusion

1. Rzk is an experimental(!), but usable proof assistant for synthetic co-categories.
rzk-lang.github.io

2. With Emily Riehl and Jonathan Weinberger, we have formalized the oco-categorical
Yoneda lemma in Rzk.
emilyriehl.github.io/yoneda/

3. We have started to formalize more with new contributors (feel free to join!):
rzk-lang.github.io/sHoTT/

4. Rzk and tools around it are growing (we need your help/feedback):
github.com/rzk-lang

Thank you!

34/34

http://rzk-lang.github.io
https://emilyriehl.github.io/yoneda/
https://rzk-lang.github.io/sHoTT/
https://github.com/rzk-lang

References i

[4 Bardomiano Martinez, César (2022). Limits and colimits of synthetic
oo-categories. arXiv: 2202.12386 [math.CT].

[4 Buchholtz, Ulrik and Jonathan Weinberger (2023). “Synthetic fibered
(00, 1)-category theory”. In: Higher Structures 7 (1), pp. 74-165. arXiv: 2105.01724
[math.CT].

[4 Riehl, Emily and Michael Shulman (2017). “A type theory for synthetic
oo-categories”. In: Higher Structures 1 (1). arXiv: 1705.07442 [math.CT].

https://arxiv.org/abs/2202.12386
https://arxiv.org/abs/2105.01724
https://arxiv.org/abs/2105.01724
https://arxiv.org/abs/1705.07442

	Rzk in context
	Simplicial type theory in Rzk
	Simplicial HoTT formalization[2]joint with Emily Riehl and Jonathan Weinberger
	Development of Rzk
	Conclusion
	Appendix

