Free Foil: Generating Efficient and Scope-Safe Abstract Syntax

Nikolai Kudasov, Renata Shakirova, Egor Shalagin, Karina Tyulebaeva
The 4th International Conference on Code Quality — ICCQ 2024
Innopolis, Russia, June 22, 2024

Lab of Programming Languages and Compilers

u INNOPOLIS
I UNIVERSITY

Capture-Avoiding Substitution

In presence of bound (local) variables, substitution is not trivial. In A-calculus:

(Az.Ay.z)y =p [z = yl(Ay.x) # Ay.y
This is not just a theoretic issue! Capture-avoiding substitution is used to implement

1. type elaboration (especially with dependent types, e.g. in Agda)

2. inlining and other hygienic transformations in compilers, e.g. in GHC
(Peyton Jones and Marlow 2002)

3. hygienic macro expansion, e.g. in Lean (Ullrich and Moura 2020)

4. SMT solvers, theorem provers, and other formal systems

2/16

Approaches to Abstract Syntax with Binders

Many approaches exist to prevent name captures, varying in type safety, efficiency, and
ability to produce generic algorithms (starting with substitution).

Safe | Efficient | General
Naive NO NO NO
de Bruijn 1972 NO NO
Bird and Paterson 1999 YES NO NO
“Rapier” by Peyton Jones and Marlow 2002 NO YES NO
PHOAS by Chlipala 2008 YES YES NO
“Foil” by Maclaurin, Radul, and Paszke 2023 || YES YES NO
“Free Scoped Monads" by Kudasov 2024 YES NO YES
“Free Foil” (our work) | YES| YES* | YES |

3/16

The Rapier and the Foil

The “Rapier” (Peyton Jones and Marlow 2002, used in GHC and Agda):

e implements the Barendregt convention (Barendregt 1985)
e does not rely on global state (amenable to parallelization)

e relies on immutable maps (Okasaki and Gill 1998) for efficient scopes and

substitutions
The “Foil” (Maclaurin, Radul, and Paszke 2023, used in Dex):

e same underlying representation as the “Rapier”
e adds phantom types parameters to track scopes statically
e offers safe zero-cost "sinking” (corresponds to “shifting” for de Bruijn indices)

e relies on existential types and rank-2 polymorphism for scope-safety

4/16

The Foil: Scope-Safe Types

The "Foil” introduces the following scope-safe types and classes:

1. Name n — an identifier in scope n (represented as a type variable)
2. NameBinder n 1 — an identifier that extends scope n to scope 1

3. Scope n — a set of identifiers in scope n
4

. DExt n 1 — a constraint ensuring that 1 contains distinct names and extends n

To work safely with binders, the “Foil” relies on rank-2 polymorphism:

withRefreshed
: Scope o
-> Name i
-> (forall o'. DExt o o' => NameBinder o o' -> r)

->r

5/16

The Foil: Sinkability Proof (User Code)

The user can use the “Foil” to construct scope-safe abstract syntax:

data Expr n where

VarE :: Name n -> Expr n -— variable: x
AppE :: Expr n -> Expr n -> Expr n -- application: (e; e2)
LamE :: NameBinder n 1 -> Expr 1 -> Expr n -- abstraction: A\z.e

The following instance proves that we can “sink” expressions safely:

instance Sinkable Expr where
-- stinkabilityProof :: (Name n -> Name 1) -> Ezpr n -> Ezpr 1
sinkabilityProof rename (VarE v) = VarE (rename v)
sinkabilityProof rename (AppE f e) =
AppE (sinkabilityProof rename f) (sinkabilityProof rename e)
sinkabilityProof rename (LamE binder body) =
extendRenaming rename binder $ \rename' binder' ->
LamE binder' (sinkabilityProof rename' body) 6/16

The Foil: Substitution (User Code)

The scope-safe types ensure that we do not mix up the scopes and do not forget to
extend scopes and substitutions:

substitute :: Distinct o => Scope o -> Substitution Expr i o -> Expr i -> Expr o
substitute scope subst = \case
VarE name -> lookupSubst subst name
AppE f x -> AppE (substitute scope subst f) (substitute scope subst x)
LamE binder body -> withRefreshed scope binder $ \extendSubst binder' ->
let subst' = extendSubst subst
scope' = extendScope binder' scope
body' = substitute scope' subst' body
in LamE binder' body'

But the user still has to write all of this (and more) before doing anything useful!

7/16

Limitations of the Foil

The “Foil” is safe, but does not provide any of the following for the object language:

. capture-avoiding substitution

. a-equivalence check (which is non-trivial to implement efficiently!)

1

2

3. scope-safe data type(s) for abstract syntax of the object language

4. conversion functions to/from raw representation (e.g. to connect to a parser)
5

. derivation of sinkability proof(s) for the object language

Also, the original “Foil” does not offer general support for patterns (complex binders),

but patterns can be relatively easily implemented in the user code.

A “Foil” implementation of All-interpreter take 251 lines of Haskell code.

8/16

Distinct Types for Scope Annotations

Raw representation is usually bound to concrete syntax and can be generated by parser
generators like BNF Converter! from a grammar file. Our first idea was to extend
grammar with some scope annotations, to generate the scope-safe syntax. However, as
it turns out it is enough to use 4 distinct types (or non-terminals in the grammar):

data Expr
= Var Ident
| App Expr Expr
| Lam Pattern ScopedExpr

data Pattern = PatternVar Ident
data ScopedExpr = ScopedExpr Expr

"https://bnfc.digitalgrammars.com
9/16

https://bnfc.digitalgrammars.com

The Foil + Template Haskell

We use Template Haskell (Sheard and Jones 2002) to generate

1. scope-safe abstract syntax
2. conversion functions to/from raw representation

3. sinkability proof(s)
This approach works well with BNFC-generated types,
(with and without the -—functor option for generic location annotations).

It is technically possible to generate substitution and a-equivalence, but Template

Haskell is a fragile instrument, and we prefer to avoid relying too much on it.

All-interpreter with TH takes 98 lines of Haskell code.

10/16

Merging the Foil with Free Scoped Monads

For generic algorithms, we merge the “Foil” with free scoped monads (Kudasov 2024):
data ScopedAST sig n where
ScopedAST :: NameBinder n 1 -> AST sig 1 -> ScopedAST sig n

data AST sig n where
Var :: Name n -> AST sig n
Node :: sig (ScopedAST sig n) (AST sig n) -> AST sig n

Here, AST sig n is the type of scope-safe terms freely generated from a signature sig.

For example, this signature corresponds for A-calculus:

data ExprSig scope term = App term term | Lam scope

Recursive scope-safe AST for A-calculus is generated with AST:

type Expr n = AST ExprSig n
11/16

The Free Foil

The “Free Foil” enables various generic algorithms, which are written once and then
can be reused for any object language:

1. capture-avoiding substitution
2. a-equivalence checks

3. abstract syntax a la carte

4

. (higher-order) unification (not implemented yet)

All-interpreter with “Free Foil” takes 181 lines of Haskell code.

12/16

The Free Foil + Template Haskell (experimental)

We can also use Template Haskell with the Free Foil, getting almost all the boilerplate
and generic algorithms for free:

-- *x Signature

mkSignature ''Raw.Term' ''Raw.VarIdent ''Raw.ScopedTerm' ''Raw.Pattern'
deriveZipMatch ''Term'Sig

deriveBifunctor ''Term'Sig

deriveBifoldable ''Term'Sig

deriveBitraversable ''Term'Sig

—-- ** Pattern synonyms

mkPatternSynonyms ''Term'Sig

—-- ** Converstion helpers
mkConvertToFreeFoil ''Raw.Term' ''Raw.VarIdent ''Raw.ScopedTerm' ''Raw.Pattern'
mkConvertFromFreeFoil ''Raw.Term' ''Raw.VarIdent ''Raw.ScopedTerm' ''Raw.Pattern'

MI-interpreter with “Free Foil” and TH takes 77 lines of Haskell code.
13/16

Benchmark Results

We use Stephanie Weirich's benchmark suite for A-calculus implementations to
compare performance of “Free Foil” against other implementations.

Our findings are as follows:

1. "Foil” > “Free Foil” > "free scoped monads”
2. strict and lazy implementations win in different benchmarks

3. the fastest implementations rely on delayed substitutions

See our fork of the benchmark suite on GitHub: KarinaTyulebaeva/lambda-n-ways.

14/16

https://github.com/KarinaTyulebaeva/lambda-n-ways

In the paper:

Ol & Wi

6.

CoSinkable patterns for the Foil

Template Haskell generators for the Foil

The Free Foil representation

Generic substitution for the Free Foil

Performance benchmarks (see KarinaTyulebaeva/lambda-n-ways)
AlI-calculus interpreter implementations for comparison of approaches

Additionally (on GitHub, see fizruk/free-foil):

1.
2.
&

Template Haskell generators for the Free Foil signature and conversion functions
Generic a-equivalence for the Free Foil
Generic conversion helpers for the Free Foil

All Template Haskell generators work with BNFC-generated abstract syntax! 15/16

https://github.com/KarinaTyulebaeva/lambda-n-ways
https://github.com/fizruk/free-foil

1. Generalized binders (patterns) in the free foil would enable more languages.

2. General closure representation (delayed substitutions) should enable normalization
by evaluation and other efficient substitution-heavy algorithms.

3. General (higher-order) unification algorithms may be implemented now on top of
the free foil, adapting a previous approach (Kudasov 2024).

4. Strict(er) free foil representation may offer better performance.

5. Church-encoded Free Foil representation a la (Voigtlander 2008) should offer
better performance for substitution.

6. Singleton scope types (Eisenberg and Weirich 2012) may simplify the interface,
removing the explicit scope parameter from many functions.

7. Zero-overhead generic algorithms probably could be derived safely with “generic

programming for all kinds" (Serrano and Miraldo 2018)

16/16

Thank youl!

References i

[§ Barendregt, Hendrik Pieter (1985). The lambda calculus - its syntax and
semantics. Vol. 103. Studies in logic and the foundations of mathematics. North-Holland.
ISBN: 978-0-444-86748-3.

[§ Bird, Richard S. and Ross Paterson (1999). “de Bruijn notation as a nested
datatype”. In: Journal of Functional Programming 9.1, pp. 77-91. DOT:
10.1017/50956796899003366.

[§ Chlipala, Adam (Sept. 2008). “Parametric Higher-Order Abstract Syntax for
Mechanized Semantics”. In: SIGPLAN Not. 43.9, pp. 143-156. 1sSN: 0362-1340. DOI:
10.1145/1411203.1411226.

https://doi.org/10.1017/S0956796899003366
https://doi.org/10.1145/1411203.1411226

References ii

[§ de Bruijn, N.G (1972). “Lambda calculus notation with nameless dummies, a
tool for automatic formula manipulation, with application to the
Church-Rosser theorem”. In: Indagationes Mathematicae (Proceedings) 75.5,
pp. 381-392. 1SSN: 1385-7258. DOI:
https://doi.org/10.1016/1385-7258(72)90034-0. URL:
https://www.sciencedirect.com/science/article/pii/1385725872900340.

[§ Eisenberg, Richard A. and Stephanie Weirich (2012). “Dependently typed
programming with singletons”. In: Proceedings of the 2012 Haskell Symposium.
Haskell '12. Copenhagen, Denmark: Association for Computing Machinery, pp. 117-130.
ISBN: 9781450315746. DOI: 10.1145/2364506.2364522. URL:
https://doi.org/10.1145/2364506.2364522.

https://doi.org/https://doi.org/10.1016/1385-7258(72)90034-0
https://www.sciencedirect.com/science/article/pii/1385725872900340
https://doi.org/10.1145/2364506.2364522
https://doi.org/10.1145/2364506.2364522

References iii

B
B

Kudasov, Nikolai (2024). Free Monads, Intrinsic Scoping, and Higher-Order
Preunification. To appear in TFP 2024. Orange, NJ, USA. arXiv: 2204.05653 [cs.L0].
Maclaurin, Dougal, Alexey Radul, and Adam Paszke (2023). “The Foil:
Capture-Avoiding Substitution With No Sharp Edges”. In: Proceedings of the
34th Symposium on Implementation and Application of Functional Languages. IFL '22.
Copenhagen, Denmark: Association for Computing Machinery. 1SBN: 9781450398312. DOTI:
10.1145/3587216.3587224. URL: https://doi.org/10.1145/3587216.3587224.
Okasaki, Chris and Andrew Gill (1998). “Fast mergeable integer maps”. In:
Workshop on ML, pp. 77-86.

https://arxiv.org/abs/2204.05653
https://doi.org/10.1145/3587216.3587224
https://doi.org/10.1145/3587216.3587224

References iv

[§ Peyton Jones, Simon and Simon Marlow (July 2002). “Secrets of the Glasgow
Haskell Compiler inliner”. In: Journal of Functional Programming 12, pp. 393—434.
URL: https://www.microsoft.com/en-us/research/publication/secrets-of-
the-glasgow-haskell-compiler-inliner/.

[§ Serrano, Alejandro and Victor Cacciari Miraldo (2018). “Generic programming of
all kinds”. In: Proceedings of the 11th ACM SIGPLAN International Symposium on
Haskell. Haskell 2018. St. Louis, MO, USA: Association for Computing Machinery,
pp. 41-54. 1sBN: 9781450358354. DOI: 10.1145/3242744.3242745. URL:
https://doi.org/10.1145/3242744 .3242745.

https://www.microsoft.com/en-us/research/publication/secrets-of-the-glasgow-haskell-compiler-inliner/
https://www.microsoft.com/en-us/research/publication/secrets-of-the-glasgow-haskell-compiler-inliner/
https://doi.org/10.1145/3242744.3242745
https://doi.org/10.1145/3242744.3242745

References v

[§ Sheard, Tim and Simon Peyton Jones (2002). “Template meta-programming
for Haskell” . In: Proceedings of the 2002 ACM SIGPLAN Workshop on Haskell, Haskell
2002, Pittsburgh, Pennsylvania, USA, October 3, 2002. Ed. by Manuel M. T. Chakravarty.
ACM, pp. 1-16. DOI: 10.1145/581690.581691. URL:
https://doi.org/10.1145/581690.581691.

[§ Ullrich, Sebastian and Leonardo de Moura (2020). “Beyond Notations: Hygienic
Macro Expansion for Theorem Proving Languages”. In: Automated Reasoning.
Ed. by Nicolas Peltier and Viorica Sofronie-Stokkermans. Cham: Springer International
Publishing, pp. 167-182. 1sBN: 978-3-030-51054-1.

https://doi.org/10.1145/581690.581691
https://doi.org/10.1145/581690.581691

References vi

[§ Voigtlander, Janis (2008). “Asymptotic Improvement of Computations over
Free Monads”. In: Mathematics of Program Construction. Ed. by Philippe Audebaud
and Christine Paulin-Mohring. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 388-403.
ISBN: 978-3-540-70594-9. DOI: 10.1007/s10817-011-9225-2.

https://doi.org/10.1007/s10817-011-9225-2

	Appendix

