
Teaching Type Systems Implementation with Stella,
an Extensible Statically Typed Programming Language

Nikolai Kudasov joint with Abdelrahman Abounegm and Alexey Stepanov
Trends in Functional Programming in Education (TFPIE), January 9th, 2024

Lab of Programming Languages and Compilers



Context

Students and course format:

1. 3rd year undergraduate students under “Software Development” track
2. 60–90 students (2–3 groups)
3. an intensive “block” course (second half of semester, 2 lectures + 2 labs per week)
4. follows an introductory “Compilers Construction” course based partially on classic

textbooks (Appel 2004; Muchnick 1998; Wirth 1996)

Intended learning outcomes:

1. Understand what a type system is and what properties one might expect from it
2. Understand, be able to follow and implement typechecking procedure(s)
3. Reason about program behaviour with types
4. Understand challenges of mixing some of the type system features
5. (extra) Understand some ideas for compiling lazy functional programs

2/11



Syntax of λ-calculus vs Python/C/Java

First iteration of the course followed closely TaPL (Pierce 2002), however, students
were struggling to absorb coding exercises based on typed λ-calculi.

We noticed that students struggle with the syntax of λ-calculus, but managed to
internalize and explain the semantics better when examples are translated into
equivalent programs in Python, C++, or Java.

So, in the second iteration of the course, we have decided to replace the syntax with
something that students can potentially absorb better.

The result is the Stella language1.

1https://fizruk.github.io/stella/

3/11

https://fizruk.github.io/stella/


Stella Core

Stella Core is a minimalistic expression-based purely functional programming language:

1. pure single-parameter top-level named functions
2. built-in Nat and Bool types with corresponding functions and literals
3. first-class functions
4. Rust-inspired syntax

1 // sample program in Stella Core
2 language core;
3

4 fn increment_twice(n : Nat) -> Nat {
5 return succ(succ(n))
6 }
7

8 fn main(n : Nat) -> Nat {
9 return increment_twice(succ(n))

10 }
4/11



Stella Language Extensions

Stella features a number of language extensions, most of which follow certain sections
from TaPL (Pierce 2002). The idea is that most extensions are small enough to be
completed as a part of a coding assignment.

1 language core;
2

3 extend with #records, #structural-subtyping;
4

5 fn getX(r : {x : Nat}) -> Nat {
6 return r.x
7 }
8

9 fn main(n : Nat) -> Nat {
10 return getX({x = n, y = n});
11 }

5/11



An Incomplete List of Stella Extensions

Feature Full Partial Full, % Partial, %
Records 46 0 94% 0%
Pairs 45 0 92% 0%
Unit type 44 0 90% 0%
Sequencing 43 0 88% 0%
References 42 0 86% 0%
Sum types 39 0 80% 0%
Errors 39 0 80% 0%
Subtyping for records 39 0 80% 0%
Tuples 38 3 78% 6%
Universal types 17 21 35% 43%
Top and Bot types 14 8 29% 16%
Exceptions with a fixed type 11 0 22% 0%
Exceptions with an open variant type 10 0 20% 0%
letrec-binding 9 0 18% 0%
Subtyping for variants 9 0 18% 0%
Variants 7 0 14% 0%
let-binding 7 2 14% 4%
Structural patterns 3 21 6% 43%

Table 1: Implemented features in numbers

6/11



Documentation and Playground

The website2 features documentation and a live Playground so that students can check
different programs and compare the canonical implementation against theirs.

2https://fizruk.github.io/stella/

7/11

https://fizruk.github.io/stella/


Implementation Templates

We encourage students to use different implementation languages. To support that, we
provide implementation templates3 in C++, Java, Kotlin, OCaml, TypeScript, Swift,
Rust, Go, and Python.

The templates feature a parser, a set of types for AST, an AST traversal skeleton, and
a pretty-printer. A big part is generated via BNF Converter (Forsberg and Ranta 2004)
and/or ANTLR. Importantly, students do not have to work with the parser, they work
with the AST for the full language and are allowed to simply ignore unsupported parts.

From our experience, once the project template loads in an IDE(s) that students are
used to (usually, VS Code, IntelliJ IDEA and other JetBrains’ IDEs), setup takes
virtually no time for them.
3see https://github.com/IU-ACCPA-2023

8/11

https://github.com/IU-ACCPA-2023


Course Structure

The most recent iteration of the course featured several blocks:

1. Simple Types: Stella Core, Unit, pairs, sum types

2. Normalization and Recursive Types (theoretical interlude)

3. Imperative Objects: sequencing, mutable references, structural subtyping;

4. Type Reconstruction and Universal Types: constraint-based type inference,
System F and Hindley-Milner type systems;

5. Runtime for Lazy Functional Languages: STG language (Jones 1992)

Due to the time limitations for the course (half-semester), the amount of material is
restricted, so we do not explore topics such as substructural type systems, dependent
types, and higher-order types.

9/11



Results

Overall, using Stella language in place of typed λ-calculi was appreciated by the
students and we have seen significant improvement in students’ performance4.

We had a one week delay at the beginning of the course, since we initially provided
Makefile-based project templates, but most students experienced issues with it (also due
to lack of experience with such setups). We do not expect similar delays in the future.

Students struggled most with implementation of Universal Types (due to name
captures!) and Structural Patterns (typically, due to mutable state and Visitor pattern
implementations).

4in terms of completed coding assignments

10/11



Conclusion

We have implemented a half-semester course, focused around the study and
implementation of type systems, supported by a special language Stella. Overall, we
think of our experience as positive, although many improvements are possible:

1. Support more of standard extensions: nominal types, bounded universal
quantification, throws-annotations, and more;

2. Add more extensions related to operational semantics (to explore compiler
backends for functional languages);

3. Improve quality and automation of tests.

4. Make it possible to implement Stella in Stella?

Thank you!

11/11



References i

Appel, Andrew W. (2004). Modern Compiler Implementation in ML. USA:

Cambridge University Press. isbn: 0521607647.

Forsberg, Markus and Aarne Ranta (2004). “BNF Converter”. In: Proceedings of

the 2004 ACM SIGPLAN Workshop on Haskell. Haskell ’04. Snowbird, Utah, USA:

Association for Computing Machinery, pp. 94–95. isbn: 1581138504. doi:

10.1145/1017472.1017475. url:

https://doi.org/10.1145/1017472.1017475.

Jones, Simon L. Peyton (1992). “Implementing Lazy Functional Languages on
Stock Hardware: The Spineless Tagless G-Machine”. In: J. Funct. Program. 2.2,

pp. 127–202. doi: 10.1017/S0956796800000319. url:

https://doi.org/10.1017/S0956796800000319.

https://doi.org/10.1145/1017472.1017475
https://doi.org/10.1145/1017472.1017475
https://doi.org/10.1017/S0956796800000319
https://doi.org/10.1017/S0956796800000319


References ii

Muchnick, Steven S. (1998). Advanced Compiler Design and Implementation.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. isbn: 1558603204.

Pierce, Benjamin C. (2002). Types and programming languages. MIT Press. isbn:

978-0-262-16209-8.

Wirth, Niklaus (1996). Compiler Construction. USA: Addison Wesley Longman

Publishing Co., Inc. isbn: 0201403536.


	Appendix

